Western Pacific Warm Pool Region Sensitivity to Convective Triggering by Boundary Layer Thermals in the NOGAPS Atmospheric GCM
نویسندگان
چکیده
The sensitivity of the atmospheric general circulation model of the Navy Operational Global Atmospheric Prediction System to a parameterization of convective triggering by atmospheric boundary layer thermals is investigated. The study focuses on the western Pacific warm pool region and examines the results of seasonal integrations of the model for the winter of 1987/88. A parameterization for thermal triggering of deep convection is presented that is based on a classification of the unstable boundary layer. Surface-based deep convection is allowed only for boundary layer regimes associated with the presence of thermals. The regime classification is expressed in terms of a Richardson number that reflects the relative significance of buoyancy and shear in the boundary layer. By constraining deep convection to conditions consistent with the occurrence of thermals (high buoyancy to shear ratios), there is a significant decrease in precipitation over the southern portion of the northeast trade wind zone in the tropical Pacific and along the ITCZ. This decrease in precipitation allows for an increased flux of moisture into the region south of the equator corresponding to the warmest portion of the Pacific warm pool. Improvements in the simulated distribution of precipitation, precipitable water, and low-level winds in the tropical Pacific are demonstrated. Over the western Pacific, the transition from free convective conditions associated with thermals to forced convective conditions is found to be primarily due to variations in mixed layer wind speed. Low-level winds thus play the major role in regulating the ability of thermals to initiate deep convection. The lack of coupling with the ocean in these simulations may possibly produce a distorted picture in this regard.
منابع مشابه
Learning to soar in turbulent environments.
Birds and gliders exploit warm, rising atmospheric currents (thermals) to reach heights comparable to low-lying clouds with a reduced expenditure of energy. This strategy of flight (thermal soaring) is frequently used by migratory birds. Soaring provides a remarkable instance of complex decision making in biology and requires a long-term strategy to effectively use the ascending thermals. Furth...
متن کاملThe March 1997 Westerly Wind Event and the Onset of the 1997/98 El Niño: Understanding the Role of the Atmospheric Response
In a previous study, the effect of the March 1997 Westerly Wind Event (WWE) on the evolution of the tropical Pacific Ocean was studied using an ocean general circulation model (GCM). The response was characterized by (i) a cooling of the far western Pacific (;0.88C), (ii) a rapid eastward displacement of the warm pool (2000 km in a month), and (iii) a weak warming of the central eastern Pacific...
متن کاملThe Impact of ENSO on Atmospheric Intraseasonal Variability as Inferred from Observations and GCM Simulations
The impact of the El Niño–Southern Oscillation (ENSO) on the atmospheric intraseasonal variability in the North Pacific is assessed, with emphasis on how ENSO modulates midlatitude circulation anomalies associated with the Madden–Julian oscillation (MJO) in the Tropics and the westward-traveling patterns (WTP) in high latitudes. The database for this study consists of the output of a general ci...
متن کاملEpisodic Trade Wind Regimes over the Western Pacific Warm Pool
The western Pacific warm pool experiences the greatest rainfall of any oceanic region on earth. While the SST is everywhere high over the warm pool, there is great spatial and temporal variability in rainfall. Sounding data from the recent TOGA COARE are used to document this variability. In particular, the vertical distributions of heating and moistening at different phases of the 30–60 day or...
متن کاملThe Properties of Convective Clouds over the Western Pacific and Their Relationship to the Environment of Tropical Cyclones
Using data obtained from the western Pacific region during “Tropical Cyclone Structure 2008” (TCS08), ONR’s field program, this study proposes to investigate large-scale environmental conditions, mesoscale phenomena, and small-scale convective bursts, as well as their interactions that are responsible for TC formation and intensity changes. Specific objectives include 1) characterizing the inte...
متن کامل